Lendületvétel – Matematika, érettségi – egyetemi felkészítő középiskolások részére

Utolsó módosítás:
2024.11.20 13:37
Azonosító:21-001
Tanfolyamvezető:Richlik-Horváth Katalin
Tanfolyamszervező:Sárdi Éva
Képzés indulásának dátuma:2024.11.04
Jelentkezési határidő:2024.10.14
Óraszám:72
Ár (nettó):72.000,-Ft
Adó fajtája:+ÁFA (27%)
Bruttó ár:91.440,-Ft

 

A képzés célja: 11-12. osztályos középiskolás diákok számára összegző, áttekintő felkészítés az emelt szintű érettségire, valamint az egyetemi tanulmányokra.

A tanfolyam kezdése:  2024. november 4-i héten kezdődik, a preferált képzési nap szerint.

A gyorsabb regisztrációs ügyintézés érdekében kérjük, hogy a kiválasztott , preferált képzési napot az online jelentkezési felületen a számlafizetői adatoknál található: Egyéb kívánság, közlemény rovatban legyen szíves feltüntetni. Köszönjük!

HÉTFŐI CSOPORTOK

CSAK HAGYOMÁNYOS TANTERMI JELENLÉTI!

A jelentkezési lapon kérjük a legördülő menüből a  jelenléti képzési formát kiválasztani és a megjegyzéshez pedig kérjük beírni, hogy hétfő

16.00 – 19.15

NOVEMBER DECEMBER JANUÁR
 

MEGTELT!  JELENLÉTI (hagyományos tantermi oktatás, személyes jelenlétben a BME tantermeiben valósulnak meg a képzési alkalmak)

4, 11, 18,25 2, 9 6, 13, 20, 27

A 2025-ös időpontok később kerülnek fel, de ennek a csoportnak mindig hétfőn lesznek az órák.

A gyorsabb regisztrációs ügyintézés érdekében kérjük, hogy a kiválasztott , preferált képzési napot az online jelentkezési felületen a számlafizetői adatoknál található: Egyéb kívánság, közlemény rovatban legyen szíves feltüntetni. Köszönjük!

KEDDI CSOPORTOK

A jelentkezési lapon kérjük a legördülő menüből a  preferált képzési formát kiválasztani (jelenléti vagy online) és a megjegyzéshez pedig kérjük beírni, hogy kedd

16.00 – 19.15

NOVEMBER DECEMBER JANUÁR
 

MEGTELT!   1. JELENLÉTI (hagyományos tantermi oktatás, személyes jelenlétben a BME tantermeiben valósulnak meg a képzési alkalmak)

5,12, 19,26 3, 10, 7,14,21,28
MEGTELT!   2. ONLINE (időben szinkron élő ONLINE, ez  is egyfajta hagyományos jelenléti oktatás, amely nem a tanteremben valósul meg, hanem az online térben, az Adobe Connect rendszeren keresztül. )

(Az Adobe  Connect rendszer leírása lentebb olvasható.)

5,12, 19,26 3,10 7,14,21,28

A 2025-ös időpontok később kerülnek fel, de ennek a csoportnak mindig kedden lesznek az órák.

A gyorsabb regisztrációs ügyintézés érdekében kérjük, hogy a kiválasztott , preferált képzési napot az online jelentkezési felületen a számlafizetői adatoknál található: Egyéb kívánság, közlemény rovatban legyen szíves feltüntetni. Köszönjük!

MEGTELT! 

 

SZERDAI CSOPORT

CSAK ONLINE

A jelentkezési lapon kérjük a legördülő menüből az online képzési formát kiválasztani és a megjegyzéshez pedig kérjük beírni, hogy szerda

16.00 – 19.15

NOVEMBER DECEMBER JANUÁR
MEGTELT! 

ONLINE (időben szinkron élő ONLINE, ez  is egyfajta hagyományos jelenléti oktatás, amely nem a tanteremben valósul meg, hanem az online térben, az Adobe Connect rendszeren keresztül. )

(Az Adobe  Connect rendszer leírása lentebb olvasható.)

6,13, 20,27, 4,11, 8,15,22,29

A 2025-ös időpontok később kerülnek fel, de ennek a csoportnak mindig szerdán lesznek az órák.

Várható befejezés:  egységesen 2025. március  vége

Vizsga:  minden képzési  csoport esetében azonos napon 2025. áprilisban   – minden képzési csoport esetén személyes jelenlétben.

Regisztráció után további információt (számla,  pontos helyszín, belépési linkek és kódok) november elején küldünk.

Online jelentkezés

 

A 2024/25 tanévben az előkészítő sikeres teljesítése esetén a BME 60 intézményi pontot ad.

Két tárgy (pl: matematika + fizika) teljesítése esetén, mindkét tárgyra jár a 60 pont, de együttes érvényesítés esetén  a két tárgy 100 intézményi pontot ér.

A BME felvételi kalauz itt olvasható.

A sikeres teljesítés  feltételei: 

  • Az órák 80%-án való részvétel – a hiányzás mértéke nem haladhatja meg a 3 alkalmat – (jelenléti és online képzés esetén is van jelenlét ellenőrzés)     és
  • A záró felmérő utolsó képzési napon  személyes jelenlétben történő megírása  és
  • A záró felmérő legalább 60%-os teljesítése    és
  • A tanfolyami díj befizetése.

 

 

 


Az online  órákon való sikeres aktív részvételhez szükséges  a kamera és mikrofon/fülhallgató használata.

A későbbiekben a MOODLE rendszerbe kerülnek feltöltésre az online előadások anyagai, melyhez a belépési jelszót e-mailben fogjuk megküldeni, illetve az előadások felvételei is itt lesznek visszanézhetőek. A jelenlétben megtartott órákról nem készül felvétel.

A felvételek csak technikai biztonsági elemként készülnek, valamint a gyakorlást hivatottak támogatni.  Ezek utólagos  megnézése nem pótolja a foglalkozás időpontjában a jelenlétet.

 

Jelentkezni az on-line jelentkezési lap kitöltésével lehet.

 

Néhány résztvevői vélemény a korábbi csoportokból:

Sokat tudok köszönni, amiért ennyi mindent megtanulhattam itt.”

„Hasznos volt a képzés , remélem jövőre is indul hasonló”

„Nekem nagyon tetszett a képzés, megtanultam jó néhány hasznos módszert, látásmódot, ami segíti/felgyorsítja a feladat megoldást.”

„A matematika előkészítőn felül betekintést kaptam az egyetemi tananyagba, légkörbe, úgyhogy remekül sikerült ez a tanfolyam.”

„2 év matematika óra kihagyása után a tanfolyamon újra feleleveníthettem a középiskolában tanultakat és mellé sok újdonságot, új ismeretet szereztem itt. Nagy öröm volt az órákra bejárni és figyelni. Köszönöm, hogy a tanfolyamot profi módon bonyolították”

 

A program nagy gyakorlattal rendelkező műegyetemi oktatók közreműködésével valósul meg.

Kiket várunk a Lendületvétel I.  – Matematika középiskolásoknak  programba?

  • 11-12. évfolyamos középiskolásokat
  • középiskolai érettségivel rendelkező diákokat, akik a Műegyetemen műszaki-természettudományi területen szeretnének tovább tanulni

Tematika  – 72 órában,  18 alkalommal

Tudásfelmérés

  • Közös javítás, feladatok megbeszélése,

Halmazok

  • A halmaz fogalma, alkalmazása, műveletek halmazokkal. Véges halmazok számossága. Megszámlálható és nem megszámlálható halmazokra példák.
  • Matematikai logika. Fogalmak tételek, bizonyítások a matematikában. Direkt és indirekt bizonyítás, skatulya elv.

Kombinatorika, Gráfok, Számelmélet

  • Sorba rendezési, kiválasztási feladatok: permutáció, kombináció, variáció. Binomiális tétel.
  • Gráfelméleti alapfogalmak.
  • Oszthatósági alapfogalmak, prímtényezőre bontás, legkisebb közös többszörös, legnagyobb közös osztó kiszámítása. A 10 –es alaptól eltérő számrendszerek. A különböző alapú számrendszerekre való áttérés. Permanencia elv.

Algebra, Valós számok

  • Egyenes és fordított arányosság fogalma, ábrázolása. Arányossággal, százalékszámítással kapcsolatos szöveges feladatok.
  • Betűs kifejezések használata.  Algebrai kifejezések egyszerűsítése, szorzattá alakítása.
  • A valós számkör felépítése, műveletek, tulajdonságok. A valós számok és a számegyenes közötti kapcsolat. Az abszolút érték definíciója. számolás normál alakban adott számokkal. Permanencia elv.

Hatvány, Gyök, Logaritmus, Egyenletek egyenlőtlenségek, egyenletrendszerek (1)

  • A hatványozás, az n-edik gyök, a logaritmus definíciója, azonosságaik. Az egyszerűbb azonosságok bizonyítása.   Algebrai egyenletek: elsőfokú két-három ismeretlenes, paraméteres egyenletrendszerek. Másodfokú egyenletek, egyenletrendszerek. Magasabb fokú és gyökös egyenletek.

Egyenletek, egyenlőtlenségek, egyenletrendszerek (2), Függvénytan alapjai

  • Nem algebrai egyenletek: abszolút értékes, exponenciális, logaritmusos egyenletek.
  • Közép érték tételek, egyenlőtlenségek. Szöveges feladatok.
  • Alapvető függvénytani fogalmak. Összetett függvény, inverz függvény fogalma. Függvények szemléltetése.

Függvénytan, Egyváltozós valós függvény, Sorozatok

  • Alapvető függvények: lineáris, másodfokú, xn , abszolút érték, exponenciális, logaritmus, a/x,  és trigonometrikus függvények ábrázolása. Függvény transzformációk alkalmazása. Függvények jellemzése.
  • Hegyes szögek szögfüggvényei. Szögfüggvények általános definíciója. Szögfüggvényekre vonatkozó alapvető összefüggések, azonosságok. Szinusz- és koszinusztétel és alkalmazása. trigonometrikus egyenletek, egyenlőtlenségek.
  • Számtani és mértani sorozat fogalma. Szöveges feladatok.

Egyváltozós, valós függvények analízisének elemei

  • Függvények határértéke. Folytonosság. A differencia- és a differenciálhányados fogalma. Deriválási szabályok.  Differenciálszámítás alkalmazása: érintő egyenes felírása, szélsőérték feladatok megoldása, polinom függvények menetének vizsgálata.
  • Határozott integrál fogalma. Newton-Leibniz-tétel. Függvény grafikonja alatti terület számítása.

Elemi geometria, Geometriai transzformációk, Síkbeli és térbeli alakzatok

  • Térelemek, és a szög fogalma. Alakzatok távolságának értelmezése. Távolság fogalmával definiált pont halmazok. egybevágósági, hasonlósági transzformációk. merőleges vetítés. Háromszögek, négyszögek, sokszögek osztályozása, nevezetes vonalai, alapvető összefüggések, tételek. A kör részei, érintőjére vonatkozó alapvető tételek. Térbeli alakzatok: forgáshenger, forgáskúp, gúla, hasáb, gömb, csonkagúla, csonkakúp.

Vektorok síkban és térben, Koordinátageometria

  • A vektorok jelentése, alkalmazása. Alapvető fogalmak, műveletek. Koordinátával adott vektorok. Skaláris szorzat.
  • Pontok, vektorok, felezőpont, harmadoló pont , háromszög súlypontjának meghatározása. egyenes egyenletének levezetése különböző kiindulási adatokból. a kör egyenletének levezetése. a parabola egyenletének levezetése. Metszési, illeszkedési feladatok megoldása.

Kerület, terület, felszín, térfogat

  • A kerület, terület, felszín és térfogat szemléletes fogalma. Háromszögek, négyszögek, sokszögek területének kiszámítása.  A terület képletek bizonyítása. hasáb, gúla, forgáshenger, forgáskúp, gömb, csonkagúla és csonkakúp felszínének kiszámítása. Térgeometriai feladatok megoldása.

Valószínűség számítás, Statisztika

  • Esemény, eseménytér fogalma, műveletek eseményekkel. relatív gyakoriság és valószínűség kapcsolata. Nagy számok törvényének szemléltetése. Klasszikus és geometriai valószínűség. Binomiális eloszlás és alkalmazása.
  • Mintavétel fogalma. A leíró statisztika elemei. Hisztogram készítése.

Tanfolyamzárás

  • Írásbeli záró vizsga. A modul záró vizsga feladatai megoldásának megbeszélése.

További információ: Sárdi Éva
Tel.: +(36)-1-463-1696
sardi.eva[kukac]gtk.bme.hu

JELENTKEZÉSI LAP